Questions about the world of GMAT Math from other sources and general math related questions.
vscid
 
 

DS-algebra (tricky!!)

by vscid Wed Jan 07, 2009 8:54 pm

If (X^3)Y = 24, what is the value of (X^3)(Y^3) - (X^2)(Y^2) ?

1] (X^2)(Y^2) = 36
2] (X^3)(Y^2) = 72

question is from gmatscore[/img]
kylo
 
 

by kylo Thu Jan 08, 2009 6:46 am

IMO B.



Thanks!
vscid
 
 

by vscid Thu Jan 08, 2009 11:52 pm

kylo Wrote:IMO B.



Thanks!


can u show the solution?
kylo
 
 

by kylo Fri Jan 09, 2009 7:18 am

(X^3)(Y^2) = 72
24*Y = 72
Y = 3

(X^3)Y = 24
X = 2

hence we can find out the value of (X^3)(Y^3) - (X^2)(Y^2).


Thanks!
vscid
 
 

by vscid Sun Jan 11, 2009 8:56 pm

kylo Wrote:(X^3)(Y^2) = 72
24*Y = 72
Y = 3

(X^3)Y = 24
X = 2

hence we can find out the value of (X^3)(Y^3) - (X^2)(Y^2).


Thanks!


for statement 1:

given X^3Y=24, what is the value of X^3Y^3 - X^2Y^2
that is X^2Y^2(XY -1)=?


also X^2Y^2=36
that means (XY)^2=6^2
now XY can be either +6 or -6

from ques we know that X^3Y=24
divide by X^2 (which will always be positive, if x is a real number)
also it is obvious that x and y are not 0
XY=24/x^2, positive number(24) divided by a positive value (X^2), will be positive
that is XY is positive
so XY=6
sufficient

what do you think kylo?
kylo
 
 

by kylo Tue Jan 13, 2009 7:23 am

nice work - vscid. man u can really be very creative.

but u r missing few cases here -
(X^2)(Y^2) = 36
case1 X=-1 & Y=6
case2 X=1 & Y=-6

in both the above cases XY will negative.

hope this helps.



Thanks!
Grv
 
 

by Grv Tue Jan 13, 2009 9:44 pm

I agree the answer is D.

Alt. way to show I is sufficient.
We have x^3 y = 24 ....(A)
I gives us x^2 y^2 = 36 ....(B)

Divide (A) by (B)
x/y = 2/3
=> y = 3x/2 ....(C)

Substitute this in (A).
x^3.(3x/2) = 24
=> x = +/- 2.
if x is + 2, y is +3
if x is -2, y is -3.
In either case xy is +6.

Hence we can evaluate (xy)^3 - (xy)^2.
kylo
 
 

by kylo Wed Jan 14, 2009 1:26 pm

yup! now i agree with both (vscid & Grv) of u.

the 2 cases above, mentioned in my post, will not hold true for (X^3)Y = 24.

hence IMO D as well.



Thanks!
michael_shaunn
 
 

by michael_shaunn Fri Jan 16, 2009 12:58 pm

well..i believe that the answer can be obtained by using either of the clues..........and even without the clues as well.Given below is how...and its prettty simple...
In the question given is that......x^3*y=24 i.e 2^3*3=24 after prime factorizing 24.
comparing, we get x=2 and y=3.

lets talk about clue 1: x^2*y^2=36=2^2*3^2 which gives x=2 and y=3 or x=3 and y=2.But due to symmetry of the question whatever we choose x to be and the corresponding y,the answer wont change.

lets talk about the clue 2: x^3*y^2=72=2^3*3^2 implies that x=2 and y=3. Hence we obtain the solution.
JonathanSchneider
ManhattanGMAT Staff
 
Posts: 477
Joined: Wed Dec 12, 2007 5:40 am
Location: Durham, NC
 

Re: DS-algebra (tricky!!)

by JonathanSchneider Fri Feb 13, 2009 3:41 pm

Be careful, Michael. We can't assume that x and y are integers.

Nice work on the solutions above! The trick is indeed in recognizing that becayse (x^3)y = 24, x and y must have the same sign.