How many ways can you distribute 5 marbles in 3 identical baskets such that each baskets has at least 1 marble. I'm trying to solve this question using the "slot method" (the slot method is the method MGMAT advises to use for solving combinatorics questions, you can google it). I'm having some trouble arriving at the right answer. Please advise me on what I'm doing wrong.
Here is my approach:
1. Create a slot for each decision
_ _ / _ _ / _ OR _ _ _ / _ / _
2/2/1 or 3/1/1
ie: we can have 2 marbles in 2 baskets and 1 marble in 1 basket OR 3 marbles in a basket and 1 marble in 2 baskets.
2. Feel in the slots with the number of options
5 4 3 2 1 OR 5 4 3 2 1
3. Multiply
4. Divide by the factorial(s) of the number of interchangeable set(s)
I'm not sure how to proceed after step 1