by clarence.booth Fri Nov 21, 2014 5:31 pm
Hi,
As an FYI, the CAT Exam #4 still declares E as the correct answer as oppose to A. I was pulling my hair out trying justify how. I'm glad to see it is in fact A. The error was cited in 2007 and still persists. Please resolve.
Here's the question and explanation as listed on my CAT 4 exam:
Question 3
Is x > 0?
(1) |x + 3| < 4
(2) |x – 3| < 4
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
Both statements TOGETHER are sufficient, but NEITHER one ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
(1) INSUFFICIENT: We can solve this absolute value inequality by considering both the positive and negative scenarios for the absolute value expression |x + 3|.
If x > -3, making (x + 3) positive, we can rewrite |x + 3| as x + 3:
x + 3 < 4
x < 1
If x < -3, making (x + 3) negative, we can rewrite |x + 3| as -(x + 3):
-(x + 3) < 4
x + 3 > -4
x > -7
If we combine these two solutions we get -7 < x < 1, which means we can’t tell whether x is positive.
(2) INSUFFICIENT: We can solve this absolute value inequality by considering both the positive and negative scenarios for the absolute value expression |x – 3|.
If x > 3, making (x – 3) positive, we can rewrite |x – 3| as x – 3:
x – 3 < 4
x < 7
If x < 3, making (x – 3) negative, we can rewrite |x – 3| as -(x – 3) OR 3 – x
3 – x < 4
x > -1
If we combine these two solutions we get -1 < x < 7, which means we can’t tell whether x is positive.
(1) AND (2) INSUFFICIENT: If we combine the solutions from statements (1) and (2) we get an overlapping range of -1 < x < 1. We still can’t tell whether x is positive.
The correct answer is E.